Initiativ för rationell antibiotikaanvändning under och efter pandemin Gunnar Jacobsson Strama Västra Götaland 20201117 ### Antibiotikaronder VGR SU SÄS NU MAVA Sahlgrenska varje dag MAVA 2 ggr/v MAVA 2ggr/v MÄVA1 Avd 34 (internmedicin) 2 ggr/v KAVA 2 ggr/v 2ggr/v MAVA Östra varje dag 2 ggr/v MÄVA2 Barn 2 ggr/v Avd 351 (internmedicin) 2 ggr/v Urologavd 2 ggr/v Avd 357 (internmedicin) 2 ggr/v Lungavd 2 ggr/v Avd 234 (geriatrik) 1 ggn/v Avd 235 (geriatrik) 1 ggn/v Avd 236 (internmedicin) 1 ggn/v Avd 237 (internmedicin) 1 ggn/v SkaS KS Urologavd 2ggr/v Medavd7 1gg/varannanvecka Hematol.avd 1/v Medavd8 1gg/varannanvecka Avd2 1gg/varannanvecka Avd3 1 gg/varannanvecka ### **EDITORIAL** # Will coronavirus disease (COVID-19) have an impact on antimicrobial resistance? #### Dominique L Monnet¹, Stephan Harbarth² - 1. European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden - 2. Infection Control Program and Division of Infectious Diseases, University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland Correspondence: Dominique L. Monnet (dominiquel.monnet@ecdc.europa.eu) ## Factors that may influence levels of antimicrobial resistance during the COVID-19 pandemic | Type of factor | Factors that may favour an increase in AMR | Factors that may favour a decrease in AMR | |--------------------------------|---|--| | Antibiotic use in
hospitals | About 70% of hospitalised COVID-19 patients receive antibiotics [33,34] COVID-19 patients often receive empiric broad-spectrum antibiotic therapy [34-36] 16% of hospitalised COVID-19 patients develop a secondary bacterial infection [34], which will necessitate antibiotic therapy Possible increased use of azithromycin and teicoplanin (because of the initial absence of clear guidelines for the treatment of COVID-19 patients) [4,6,8] Difficulties in accessing advice from experts before prescribing antimicrobial agents [4] Antimicrobial stewardship efforts may be undermined because of high workloads and shifting priorities related to COVID-19 [37,38] Possible aggravation of existing shortages of certain narrow-spectrum antimicrobial agents [39,40] | Bacterial co-infection (estimated on presentation) in only 3.5% (95% CI: 1–7%) of COVID-19 patients [33] Bacterial/fungal infection in only 8% of hospitalised COVID-19 patients vs 11% in non-COVID-19 patients [34]; the percentage for COVID-19 patients may be underestimated because many may have received empiric antimicrobial therapy [41] Only 1.3% of COVID-19 patients in ICUs, and apparently no patients in other units, developed a healthcare-associated superinfection with antimicrobial-resistant bacteria [19] Postponed planned surgical interventions result in fewer antibiotic courses for surgical prophylaxis [42] Fewer emergency and planned hospital admissions [43,44], including chronically ill patients (e.g. oncology patients, diabetic patients, transplant patients), resulting in fewer antibiotic prescriptions | ### Factors that may influence levels of antimicrobial resistance during the COVID-19 pandemic | Type of factor | Factors that may favour an increase in AMR | Factors that may favour a decrease in AMR | |--------------------------------|--|--| | Antibiotic use in
hospitals | | Bacterial co-infection (estimated on presentation) in only 3.5% (95% CI: 1–7%) of COVID-19 patients [33] Bacterial/fungal infection in only 8% of hospitalised COVID-19 patients vs 11% in non-COVID-19 patients [34]; the percentage for COVID-19 patients may be underestimated because many may have received empiric antimicrobial therapy [41] | | | • About 70% of hospitalised COVID-19 patients receive antibiotics [33,34] | | | | COVID-19 patients often receive empiric broad-spectrum antibiotic therapy [34-36] 16% of hospitalised COVID-19 patients develop a secondary bacterial infection [34], which will necessitate antibiotic therapy | | | | • Possible increased use of azithromycin and teicoplanin (because of the initial absence of clear guidelines for the treatment of COVID-19 patients) [4,6,8] | • Only 1.3% of COVID-19 patients in ICUs, and apparently no patients in other units, developed a healthcare-associated superinfection with antimicrobial-resistant bacteria [19] | | | • Difficulties in accessing advice from experts before prescribing antimicrobial agents [4] | Postponed planned surgical interventions result in fewer antibiotic courses for surgical prophylaxis [42] Fewer emergency and planned hospital admissions [43,44], including chronically ill patients (e.g. oncology patients, diabetic patients, transplant patients), resulting in fewer antibiotic prescriptions | | | • Antimicrobial stewardship efforts may be undermined because of high workloads and shifting priorities related to COVID-19 [37,38] | | | | • Possible aggravation of existing shortages of certain narrow-
spectrum antimicrobial agents [39,40] | | | | | | | Type of factor | Factors that may favour an increase in AMR | Factors that may favour a decrease in AMR | |--|--|---| | Infection
prevention
and control in
hospitals | Difficulties for HCWs in adhering to standard IPC precautions because of long shifts wearing the same PPE [45] and possible shortages of certain equipment [5] Focus of HCWs on self-protection (e.g. universal gloving practices) rather than on preventing cross-transmission between patients In COVID-19 cohort units and ICUs, sessional use of PPE, e.g. long-sleeved gowns that prevent effective hand hygiene [46] and gloves that may not be changed between patients [45] | Isolation of COVID-19 patients with enhanced standard precautions, e.g. increased hand hygiene and use of PPE, plus universal chlorhexidine bathing protocols for patients in ICUs [5] Increased disinfection of the environment [4,5] COVID-19 patients are often cohorted in one single unit and cared for by the same group of HCWs [5] Fewer emergency and planned hospital admissions [43,44], including chronically ill patients (e.g. oncology patients, diabetic patients, transplant patients), resulting in lower colonisation pressure by fewer carriers of MDROs Fewer transfers from long-term care facilities may lead to fewer cycles between long-term care facilities and hospitals [5] Construction of new COVID-19 facilities without an established reservoir of MDROs [5] | | | Overcrowded facilities and possible staff shortages leading to low HCW-to-patient ratios [5] | | | | Shortages of HCWs with appropriate IPC training [4] Longer hospital stays for COVID-19 patients [5] Traditional IPC efforts may be temporarily discontinued, including those targeting antibiotic-resistant bacteria, e.g. decreased frequency of screening for carriage of MDROs and difficulties in isolating or cohorting MDRO-positive patients [4,47] Decreased laboratory capacity to detect AMR carriage, e.g. for processing rapid tests for MDROs, because resources are focused on SARS-CoV-2 diagnosis [4] | | | | | | Antibiotikaronder påverkar inte empirisk terapi ... vad göra då? Fråga Anders Lundqvist